ECC optimization on Sandy Bridge The cost of cofactor h = 1

Amber Sprenkels amber@electricdusk.com

Radboud University Nijmegen

1 April 2019

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Elliptic curves

$$\mathcal{E}: y^2 = x^3 + ax + b$$

Elliptic curves

$$\mathcal{E}: y^2 = x^3 + ax + b$$

Elliptic curves: addition

$$\mathcal{E}: y^2 = x^3 + ax + b$$

Elliptic curves: doubling

$$\mathcal{E}: y^2 = x^3 + ax + b$$

Coordinates include the point at infinity O

▶ Define P + O = P

Coordinates include the point at infinity O

▶ Define P + O = P

• Curve equation:
$$\mathcal{E}: y^2 = x^3 + ax + b$$

Coordinates include the point at infinity O

• Define P + O = P

• Curve equation:
$$\mathcal{E}: y^2 = x^3 + ax + b$$

- Coordinates are defined over a field \mathbb{F}_q
 - ▶ I.e. integers modulo q

Elliptic curves: actually

$$\mathcal{E}: y^2 = x^3 - 3x + 1$$
 defined over \mathbb{F}_{11}

Elliptic curves: actual addition

$$\mathcal{E}: y^2 = x^3 - 3x + 1$$
 defined over \mathbb{F}_{11}

Group arithmetic

- ▶ We can do arithmetic with these rules! :)
- Addition: P + Q
- **>** Subtraction: P Q
- ▶ Neutral element: *O*, i.e. "zero"

Group arithmetic

▶ We can do arithmetic with these rules! :)

- Addition: P + Q
- **>** Subtraction: P Q
- ▶ Neutral element: *O*, i.e. "zero"

Scalar multiplication:
$$[k]P = \underbrace{P + P + \dots + P}_{k \text{ times}}$$

Group arithmetic

We can do arithmetic with these rules! :)

- Addition: P + Q
- ► Subtraction: *P* − *Q*
- ▶ Neutral element: *O*, i.e. "zero"

Scalar multiplication:
$$[k]P = \underbrace{P + P + \dots + P}_{k \text{ times}}$$

Discrete log problem: given P, Q where [k]P = Q, hard to find k

Elliptic curves are cyclic

▶ Points form a cycle: $\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P} [2]P \xrightarrow{+P} [3]P \xrightarrow{+P} ... \xrightarrow{+P} [n-1]P \xrightarrow{+P} \mathcal{O}$

Elliptic curves are cyclic

► Points form a cycle:
$$\underbrace{\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P} [2]P \xrightarrow{+P} [3]P \xrightarrow{+P} \dots \xrightarrow{+P} [n-1]P \xrightarrow{+P} \mathcal{O}}_{n \text{ steps}}$$

- ► The order *n* should contain a large prime factor
- Only one cycle if n is prime

- If *n* is **not** a prime Then $n = h \cdot \ell$
- ► I.e. small loops are possible: E.g. if 4|*n*, then there is a point T_4 : $\underbrace{\mathcal{O} \xrightarrow{+T_4} T_4 \xrightarrow{+T_4} [2] T_4 \xrightarrow{+T_4} [3] T_4 \xrightarrow{+T_4} \mathcal{O}}_{I_4}$

only 4 steps!

- If *n* is **not** a prime Then $n = h \cdot \ell$
- ► I.e. small loops are possible: E.g. if 4|*n*, then there is a point T_4 : $\mathcal{O} \xrightarrow{+T_4} T_4 \xrightarrow{+T_4} [2] T_4 \xrightarrow{+T_4} [3] T_4 \xrightarrow{+T_4} \mathcal{O}$

only 4 steps!

h is called the cofactor

- If *n* is **not** a prime Then $n = h \cdot \ell$
- ► I.e. small loops are possible: E.g. if 4|*n*, then there is a point T_4 : $\mathcal{O} \xrightarrow{+T_4} T_4 \xrightarrow{+T_4} [2] T_4 \xrightarrow{+T_4} [3] T_4 \xrightarrow{+T_4} \mathcal{O}$

only 4 steps!

- h is called the cofactor
- This property is often harmless

- If *n* is **not** a prime Then $n = h \cdot \ell$
- ► I.e. small loops are possible: E.g. if 4|*n*, then there is a point T_4 : $\mathcal{O} \xrightarrow{+T_4} T_4 \xrightarrow{+T_4} [2] T_4 \xrightarrow{+T_4} [3] T_4 \xrightarrow{+T_4} \mathcal{O}$

only 4 steps!

- h is called the cofactor
- This property is often harmless
 - I.e. sometimes it's the opposite of harmless

▶ 1999: elliptic curves popularized

- ▶ 1999: elliptic curves popularized
- ▶ 2006: Curve25519 published by Bernstein
 - "Safe" for implementors

- ▶ 1999: elliptic curves popularized
- ▶ 2006: Curve25519 published by Bernstein
 - "Safe" for implementors
 - Super fast

- ▶ 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
 - "Safe" for implementors
 - Super fast
 - Has cofactor h = 8

- ▶ 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
 - "Safe" for implementors
 - Super fast
 - Has cofactor h = 8
- ► 2014: Monero cryptocurrency
 - Uses Curve25519

- ▶ 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
 - "Safe" for implementors
 - Super fast
 - Has cofactor h = 8
- 2014: Monero cryptocurrency
 - Uses Curve25519
- > 2017: vulnerability in Monero found
 - Allowed anyone to create coins out of thin air

► Transaction involves a *ring signature*

- Transaction involves a ring signature
- Double-spending is prevented by a key image I

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
 - I binds the transaction to signer's public key P

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
 - I binds the transaction to signer's public key P
 - Binding is in zero-knowledge

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
 - I binds the transaction to signer's public key P
 - Binding is in zero-knowledge
 - Key image I should be unique

Monero transactions

- Have generators G_1 , G_2 ; private key x; public key P; key image I.
- ▶ $SIGN_x(m)$
 - Sign m with private key x
 - Choose commitment $u \in_R h\mathbb{Z}_\ell$
 - Compute $a_2 = [u]G_2$; $c = H(m, a_1, a_2)$; r = u + cx
 - Output signature $s = (a_1, a_2, r)$

Monero transactions

- Have generators G_1 , G_2 ; private key x; public key P; key image I.
- ▶ $SIGN_x(m)$
 - Sign m with private key x
 - Choose commitment $u \in_R h\mathbb{Z}_\ell$
 - Compute $a_2 = [u]G_2$; $c = H(m, a_1, a_2)$; r = u + cx
 - Output signature $s = (a_1, a_2, r)$
- ► VERIFY_{P,I}(m, s)
 - $\blacktriangleright [r]G_1 \stackrel{?}{=} a_1 + [c]P$
 - $\blacktriangleright [r]G_2 \stackrel{?}{=} a_2 + [c]I$
 - I unique?

Attacking Monero signatures

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$

where $I \neq I'$.

Attacking Monero signatures

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.
Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.

$$a_2 + [c]I' = a_2 + [c](I + T_{\alpha})$$

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.

$$egin{aligned} \mathsf{a}_2 + [c] \mathsf{I}' &= \mathsf{a}_2 + [c] (\mathsf{I} + \mathcal{T}_lpha) \ &= \mathsf{a}_2 + [c] \mathsf{I} + \left[rac{\mathsf{c}}{lpha}
ight] [lpha] \mathcal{T}_lpha \end{aligned}$$

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.

$$\begin{aligned} a_2 + [c]I' &= a_2 + [c](I + T_\alpha) \\ &= a_2 + [c]I + \left[\frac{c}{\alpha}\right][\alpha]T_\alpha \\ &= a_2 + [c]I + \left[\frac{c}{\alpha}\right]\mathcal{O} \end{aligned}$$

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.

$$a_{2} + [c]I' = a_{2} + [c](I + T_{\alpha})$$
$$= a_{2} + [c]I + \left[\frac{c}{\alpha}\right][\alpha]T_{\alpha}$$
$$= a_{2} + [c]I + \left[\frac{c}{\alpha}\right]O$$

Challenge. Find some signature+keypair *a*₂, *c*, *r*, and *I*, s.t.

$$[r]G_2 = a_2 + [c]I = a_2 + [c]I'$$
,

where $I \neq I'$.

Solution. Choose $I' = I + T_{\alpha}$, where $\alpha | c$ and $[\alpha] T_{\alpha} = \mathcal{O}$.

$$a_{2} + [c]I' = a_{2} + [c](I + T_{\alpha})$$
$$= a_{2} + [c]I + \left[\frac{c}{\alpha}\right][\alpha]T_{\alpha}$$
$$= a_{2} + [c]I + \left[\frac{c}{\alpha}\right]\mathcal{O}$$
$$= a_{2} + [c]I$$

Surely this could have been prevented?

Easy fix:

Protocol assumed $[r]G_2 = a_2 + [c]I$, only for a single I

Surely this could have been prevented?

- Protocol assumed $[r]G_2 = a_2 + [c]I$, only for a single I
- Fix: check if the order of I is ℓ

Surely this could have been prevented?

- Protocol assumed $[r]G_2 = a_2 + [c]I$, only for a single I
- Fix: check if the order of I is ℓ
 - ▶ i.e. check $[\ell]I \stackrel{?}{=} O$

- Protocol assumed $[r]G_2 = a_2 + [c]I$, only for a single I
- Fix: check if the order of I is ℓ
 - ▶ i.e. check $[\ell]I \stackrel{?}{=} O$
 - ▶ Fun fact: this check makes the verification 2× slower

Why didn't they validate points?

Why didn't they validate points?

Look at the docs:

How do I validate Curve25519 public keys?

Don't. The Curve25519 function was carefully designed to allow all 32-byte strings as Diffie-Hellman public keys. Relevant lower-level facts: the number of points of this elliptic curve over the base field is 8 times the prime $2^{252} + 27742317777372353535851937790883648493$; the number of points of the twist is 4 times the prime $2^{253} - 223 - 223$

(highlight added by me)

- Protocol assumed $[r]G_2 = a_2 + [c]I$, only for a single I
- Fix: check if the order of I is ℓ
 - ▶ i.e. check $[\ell]I \stackrel{?}{=} O$
- Better fix: use a prime order curve

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

What is the actual performance benefit of Curve25519 over traditional (Weierstrass) curves?

Our contribution

Our research:

- Implement variable base-point scalar multiplication
 - That is the algorithm for computing [k]P,
 - for a prime-order curve,
 - that looks similar to Curve25519,
 - on Sandy Bridge microarchitecture

Our contribution

Our research:

- Implement variable base-point scalar multiplication
 - That is the algorithm for computing [k]P,
 - for a prime-order curve,
 - that looks similar to Curve25519,
 - on Sandy Bridge microarchitecture
- Compare performance with Curve25519 (Sandy2x)

Selecting a curve

▶ I.e. $\mathcal{E}: y^2 = x^3 - 3x + 13318$, defined over $\mathbb{F}_{2^{255}-19}$.

Selecting a curve

- ▶ I.e. \mathcal{E} : $y^2 = x^3 3x + 13318$, defined over $\mathbb{F}_{2^{255}-19}$.
- Prime order curve; same field as Curve25519

Scalar multiplication overview

scalar multiplication			
addition formulas			
ge_double		ge_add	
field arithmetic			
fe_add	fe_sub	fe_mul	fe_carry

Use double-precision floating points

- Use double-precision floating points
- ► Allows 4× vectorized operations using SIMD instructions

- Use double-precision floating points
- \blacktriangleright Allows 4× vectorized operations using SIMD instructions
- ► Radix-2^{21.25} redundant representation

- Use double-precision floating points
- \blacktriangleright Allows 4× vectorized operations using SIMD instructions
- ▶ Radix-2^{21.25} redundant representation
- Use 12 limbs to represent 255-bit numbers

- Use double-precision floating points
- ► Allows 4× vectorized operations using SIMD instructions
- ▶ Radix-2^{21.25} redundant representation
- Use 12 limbs to represent 255-bit numbers
 - ▶ I.e. $f = f_0 + f_1 + ... + f_{11}$

Field arithmetic

Carry

- ▶ $TOP(f_i)$: force loss of precision
- ► Then, move "high" bits to next limb

Field arithmetic

Carry

- ▶ $TOP(f_i)$: force loss of precision
- Then, move "high" bits to next limb

Addition

Field arithmetic

Carry

- $TOP(f_i)$: force loss of precision
- Then, move "high" bits to next limb
- Addition
 - (f + g)_i = f_i + g_i
 (f − g)_i = f_i − g_i
- Multiplication
 - $(f \cdot g)_k = \sum_{i+j=k} f_i g_i + \sum_{i+j=k+12} (2^{-255} \cdot 19) f_i g_i$
 - Optimized using Karatsuba's multiplication

- Use Renes-Costello-Batina formulas
- Rewrite using graphs into vectorized operations
- Implement using field arithmetic functions

Point doubling

Point doubling

Point addition

Point addition

Scalar multiplication

Use left-to-right double-and-add

Use left-to-right double-and-add

• Optimization: use signed window method (w = 5)

- Use left-to-right double-and-add
 - Optimization: use signed window method (w = 5)
- ▶ Uses 263 · **double** + 59 · **add** operations

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results
Table: Cycle counts for Sandy2x and this work.

Implementation	Sandy Bridge	Ivy Bridge	Haswell
Curve25519 (Sandy2x)	$159 \mathrm{kcc}$	$157 \mathrm{kcc}$	-
this work	390 kcc	383kcc	$340 \mathrm{kcc}$

Table: Cycle counts for Sandy2x and this work.

Implementation	Sandy Bridge	Ivy Bridge	Haswell
Curve25519 (Sandy2x)	$159 \mathrm{kcc}$	$157 \mathrm{kcc}$	_
this work	390 kcc	383kcc	$340 \mathrm{kcc}$

 $Conclusion: \ \text{about} \ 2.5 \times \ \text{slower}$

Thank you! I

Acknowledgements <3:

- Peter, (+the department, Marrit, Judith, Gerdriaan)
- The LLVM project (especially for llvm-mca)
- Olivier (from SNT; for lending their Sandy Bridge machine)

Thank you! I

Acknowledgements <3:

- Peter, (+the department, Marrit, Judith, Gerdriaan)
- The LLVM project (especially for llvm-mca)
- Olivier (from SNT; for lending their Sandy Bridge machine)

Stuff I left out:

- Ristretto
- Politics
- Many implementation details

Thank you! II

The code is at https://github.com/dsprenkels/curve13318

Extra reading:

- My thesis: https://dsprenkels.com/files/thesis-20190311.pdf
- Monero vulnerability (1): https://nickler.ninja/blog/2017/05/23/exploiting-low-ordergenerators-in-one-time-ring-signatures/
- Monero vulnerability (2): https://moderncrypto.org/mail-archive/curves/2017/000898.html

Find me through:

- Email: amber@electricdusk.com
- PGP key: 951D 6F6E C19E 5D87 1A61 A7F4 1445 C075 FFD5 68CD

References I

Barreto, P.S.L.M.: on Twitter (May 2017), https://twitter.com/pbarreto/status/869103226276134912

- Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. pp. 207–228 (2006), https://cr.yp.to/ecdh/curve25519-20060209.pdf
- Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. pp. 124–142 (2011), https://ed25519.cr.yp.to/ed25519-20110926.pdf
- Chou, T.: Sandy2x: New Curve25519 speed records. pp. 145-160 (2016), https://www.win.tue.nl/~tchou/papers/sandy2x.pdf
- Genkin, D., Valenta, L., Yarom, Y.: May the Fourth Be With You: A microarchitectural side channel attack on several real-world applications of Curve25519. pp. 845-858 (2017), https://eprint.iacr.org/2017/806.pdf
 - Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR 145(2), 293-294 (1962), http://www.mathnet.ru/php/getFT.phtml?jrnid=dan&paperid=26729&what=fullt&option_lang=eng

References II

- Kaufmann, T., Pelletier, H., Vaudenay, S., Villegas, K.: When constant-time source yields variable-time binary: Exploiting Curve25519-donna built with MSVC 2015. pp. 573-582 (2016), https://infoscience.epfl.ch/record/223794/files/32_1.pdf
- Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 209-209 (1987), https: //www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
- Iuigi1111, "fluffypony" Spagni, R.: Disclosure of a major bug in cryptonote based currencies (May 2017), https: //src.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
- Miller, V.S.: Use of elliptic curves in cryptography. pp. 417-426 (1986), https://www.researchgate.net/profile/Victor_Miller/publication/227128293_Use_of_Elliptic_Curves_ in_Cryptography/links/0c96052e065c94b47c000000/Use-of-Elliptic-Curves-in-Cryptography.pdf
- Perrin, T.: Subject: [curves] CryptoNote and equivalent points (May 2017), https://moderncrypto.org/mail-archive/curves/2017/000898.html
- Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. pp. 403-428 (2016), http://eprint.iacr.org/2015/1060

Schnorr, C.P.: Efficient signature generation by smart cards 4(3), 161-174 (Jan 1991), https: //www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_ by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf

Double-and-add algorithm

```
function DOUBLEANDADD(k, P)
                                                                                                     \triangleright Compute [k]P
    R \leftarrow \mathcal{O}
    for i from n-1 down to 0 do
        R \leftarrow [2]R
                                                                                                            ▷ Doubling
        if k_i = 1 then
            R \leftarrow R + P
                                                                                                            ▷ Addition
        else
            R \leftarrow R + \mathcal{O}
                                                                                                            ▷ Addition
        end if
    end for
    return R
end function
```

Fixed-window double-and-add

function FIXEDWINDOW(k, P)	⊳ Compute [k]P
$k' \leftarrow \operatorname{WINDOWS}_w(k)$	
Precompute ([2] $P, \ldots, [2^w - 1]P$)	
$R \leftarrow \mathcal{O}$	
for i from $rac{n}{w}-1$ down to 0 do	
for j from 0 to $w-1$ do	
$R \leftarrow [2]R$	⊳ w doublings
end for	
if $k'_i eq 0$ then	
$R \leftarrow R + [k'_i]P$	▷ Addition
else	
$R \leftarrow R + \mathcal{O}$	▷ Addition
end if	
end for	
return R	
end function	

Signed double-and-add

function SIGNEDFIXEDWINDOW (k, P)	\triangleright Compute $[k]P$
$k' \leftarrow \operatorname{RecodeSigned}(\operatorname{Windows}_w(k))$	
Precompute $([2]P,, [2^{w-1}]P)$	
$R \leftarrow \mathcal{O}$	
for <i>i</i> from $\frac{n}{w} - 1$ down to 0 do	
for j from 0 to $w-1$ do	
$R \leftarrow [2]R$	⊳ w doublings
end for	
if $k_i' > 0$ then	
$R \leftarrow R + [k_i']P$	Addition
else if $k_i' < 0$ then	
$R \leftarrow R - [-k_i']P$	Addition
else	
$\textit{R} \leftarrow \textit{R} + \mathcal{O}$	Addition
end if	
end for	
return R	
end function	

Amber Sprenkels

Implemented signed double-and-add

$\begin{array}{l} \textbf{function } \text{ScalarMultiplication}(k, P) \\ \textbf{T} \leftarrow (\mathcal{O}, P,, [16]P) \\ k' \leftarrow \text{RecodeSigned}(\text{Windows}_{5}(k)) \end{array}$	▷ Compute $[k]P$ ▷ Precompute $([2]P,, [16]P)$
$\textit{R} \leftarrow \mathcal{O}$	
for <i>i</i> from 50 down to 0 do	
for j from 0 to 4 do	
$R \leftarrow [2]R$	⊳ 5 doublings
end for	
if $k_i' < 0$ then	
$R \leftarrow R - \mathbf{T}_{-k'}$	▷ Addition
else	
$R \leftarrow R + \mathbf{T}_{k'}$	▷ Addition
end if	
end for	
return R	$\triangleright R = (X_R : Y_R : Z_R)$
end function	

Depiction of TOP(f)

Signed windows

$$k = \underbrace{1011}_{k'_3} \underbrace{0010}_{k'_2} \underbrace{0110}_{k'_1} \underbrace{1110}_{k'_0}$$

Signed window recoding

