ECC optimization on Sandy Bridge

The cost of cofactor $h=1$

Amber Sprenkels
amber@electricdusk.com

Radboud University Nijmegen

1 April 2019

Outline

Introduction

Preliminaries
Cofactor security

ECC implementation

Results

Outline

Introduction

Preliminaries
Cofactor security

Elliptic curves

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves: addition

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves: doubling

$$
\mathcal{E}: y^{2}=x^{3}+a x+b
$$

Elliptic curves

- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$

Elliptic curves

- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$
- Curve equation: $\mathcal{E}: y^{2}=x^{3}+a x+b$

Elliptic curves

- Coordinates include the point at infinity \mathcal{O}
- Define $P+\mathcal{O}=P$
- Curve equation: $\mathcal{E}: y^{2}=x^{3}+a x+b$
- Coordinates are defined over a field \mathbb{F}_{q}
- I.e. integers modulo q

Elliptic curves: actually

$$
\mathcal{E}: y^{2}=x^{3}-3 x+1 \text { defined over } \mathbb{F}_{11}
$$

Elliptic curves: actual addition

$$
\mathcal{E}: y^{2}=x^{3}-3 x+1 \text { defined over } \mathbb{F}_{11}
$$

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"
- Scalar multiplication: $[k] P=\underbrace{P+P+\ldots+P}_{k \text { times }}$

Group arithmetic

- We can do arithmetic with these rules! :)
- Addition: $P+Q$
- Subtraction: $P-Q$
- Neutral element: \mathcal{O}, i.e. "zero"
- Scalar multiplication: $[k] P=\underbrace{P+P+\ldots+P}_{k \text { times }}$
- Discrete log problem:
given P, Q where $[k] P=Q$, hard to find k

Elliptic curves are cyclic

- Points form a cycle: $\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P}[2] P \xrightarrow{+P}[3] P \xrightarrow{+P} \ldots \xrightarrow{+P}[n-1] P \xrightarrow{+P} \mathcal{O}$

Elliptic curves are cyclic

- Points form a cycle: $\underbrace{\mathcal{O} \xrightarrow{+P} P \xrightarrow{+P}[2] P \xrightarrow{+P}[3] P \xrightarrow{+P} \ldots \xrightarrow{+P}[n-1] P \xrightarrow{+P} \mathcal{O}}_{n \text { steps }}$
- The order n should contain a large prime factor
- Only one cycle if n is prime

Cofactors

- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point $T_{4}: \underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$

Cofactors

- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point $T_{4}: \underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$
- h is called the cofactor

Cofactors

- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point $T_{4}: \underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$
- h is called the cofactor
- This property is often harmless

Cofactors

- If n is not a prime

Then $n=h \cdot \ell$

- I.e. small loops are possible:
E.g. if $4 \mid n$, then there is a point $T_{4}: \underbrace{\mathcal{O} \xrightarrow{+T_{4}} T_{4} \xrightarrow{+T_{4}}[2] T_{4} \xrightarrow{+T_{4}}[3] T_{4} \xrightarrow{+T_{4}} \mathcal{O}}_{\text {only } 4 \text { steps! }}$
- h is called the cofactor
- This property is often harmless
- I.e. sometimes it's the opposite of harmless

A brief history...

- 1999: elliptic curves popularized

A brief history...

- 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
- "Safe" for implementors

A brief history...

- 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
- "Safe" for implementors
- Super fast

A brief history...

- 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
- "Safe" for implementors
- Super fast
- Has cofactor $h=8$

A brief history...

- 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
- "Safe" for implementors
- Super fast
- Has cofactor $h=8$
- 2014: Monero cryptocurrency
- Uses Curve25519

A brief history...

- 1999: elliptic curves popularized
- 2006: Curve25519 published by Bernstein
- "Safe" for implementors
- Super fast
- Has cofactor $h=8$
- 2014: Monero cryptocurrency
- Uses Curve25519
- 2017: vulnerability in Monero found
- Allowed anyone to create coins out of thin air

The Monero vulnerability

- Transaction involves a ring signature

The Monero vulnerability

- Transaction involves a ring signature
- Double-spending is prevented by a key image I

The Monero vulnerability

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
- I binds the transaction to signer's public key P

The Monero vulnerability

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
- I binds the transaction to signer's public key P
- Binding is in zero-knowledge

The Monero vulnerability

- Transaction involves a ring signature
- Double-spending is prevented by a key image I
- I binds the transaction to signer's public key P
- Binding is in zero-knowledge
- Key image I should be unique

Monero transactions

- Have generators G_{1}, G_{2}; private key x; public key P; key image I.
- $\operatorname{SIGN}_{x}(m)$
- Sign m with private key x
- Choose commitment $u \in_{R} h \mathbb{Z}_{\ell}$
- Compute $a_{2}=[u] G_{2} ; c=H\left(m, a_{1}, a_{2}\right) ; r=u+c x$
- Output signature $s=\left(a_{1}, a_{2}, r\right)$

Monero transactions

- Have generators G_{1}, G_{2}; private key x; public key P; key image I.
- $\operatorname{SIGN}_{x}(m)$
- Sign m with private key x
- Choose commitment $u \in_{R} h \mathbb{Z}_{\ell}$
- Compute $a_{2}=[u] G_{2} ; c=H\left(m, a_{1}, a_{2}\right) ; r=u+c x$
- Output signature $s=\left(a_{1}, a_{2}, r\right)$
- $\operatorname{VERIFY}_{P, I}(m, s)$
- $[r] G_{1} \stackrel{?}{=} a_{1}+[c] P$
- $[r] G_{2} \stackrel{?}{=} a_{2}+[c] /$
- I unique?

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
\left.[r] G_{2}=a_{2}+[c]\right]^{\prime}=a_{2}+[c] 1^{\prime},
$$

where $I \neq I^{\prime}$.

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime}
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
a_{2}+[c] I^{\prime}=a_{2}+[c]\left(I+T_{\alpha}\right)
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha}
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] \mathcal{O}
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] O
\end{aligned}
$$

Attacking Monero signatures

- Challenge. Find some signature+keypair a_{2}, c, r, and I, s.t.

$$
[r] G_{2}=a_{2}+[c] /=a_{2}+[c] I^{\prime},
$$

where $I \neq I^{\prime}$.

- Solution. Choose $I^{\prime}=I+T_{\alpha}$, where $\alpha \mid c$ and $[\alpha] T_{\alpha}=\mathcal{O}$.
- Correctness.

$$
\begin{aligned}
a_{2}+[c] I^{\prime} & =a_{2}+[c]\left(I+T_{\alpha}\right) \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right][\alpha] T_{\alpha} \\
& =a_{2}+[c] I+\left[\frac{c}{\alpha}\right] \mathcal{O} \\
& =a_{2}+[c] I
\end{aligned}
$$

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c] /$, only for a single $/$

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ I, only for a single $/$
- Fix: check if the order of l is ℓ

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ I, only for a single $/$
- Fix: check if the order of l is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ I, only for a single $/$
- Fix: check if the order of l is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$
- Fun fact: this check makes the verification $2 \times$ slower

Why didn't they validate points?

Why didn't they validate points?

Look at the docs:

How do I validate Curve25519 public keys?

```
Don't. The Curve25519 function was carefully designed to allow all
32-byte strings as Diffie-Hellman public keys. Relevant lower-level
facts: the number of points of this elliptic curve over the base field is
8 times the prime 2^252 +
27742317777372353535851937790883648493; the number of points
of the twist is 4 times the prime 2^253
```

(highlight added by me)

Surely this could have been prevented?

Easy fix:

- Protocol assumed $[r] G_{2}=a_{2}+[c]$ /, only for a single I
- Fix: check if the order of I is ℓ
- i.e. check $[\ell] \stackrel{?}{=} \mathcal{O}$
- Better fix: use a prime order curve

Outline

Introduction

Preliminaries
Cofactor security

ECC implementation

```
Results
```


Goal of this thesis

What is the actual performance benefit of Curve25519 over traditional (Weierstrass) curves?

Our contribution

Our research:

- Implement variable base-point scalar multiplication
- That is the algorithm for computing $[k] P$,
- for a prime-order curve,
- that looks similar to Curve25519,
- on Sandy Bridge microarchitecture

Our contribution

Our research:

- Implement variable base-point scalar multiplication
- That is the algorithm for computing $[k] P$,
- for a prime-order curve,
- that looks similar to Curve25519,
- on Sandy Bridge microarchitecture
- Compare performance with Curve25519 (Sandy2x)

Selecting a curve

- I.e. $\mathcal{E}: y^{2}=x^{3}-3 x+13318$, defined over $\mathbb{F}_{2^{255}{ }_{-19}}$.

Selecting a curve

```
(P) Paulo Barreto
@pbarreto
Following
Given the recent ECC low-order point brouhaha, I suggest this curve over GF(2^255-19): \(y^{\wedge} 2=x^{\wedge} 3-3^{*} x+13318\), generator \(G=(-7,114)\).
1:08 AM - 29 May 2017
11 Retweets 24 Lkes (9) 3 ? 39
```


- I.e. $\mathcal{E}: y^{2}=x^{3}-3 x+13318$, defined over $\mathbb{F}_{2^{255}{ }_{-19}}$.
- Prime order curve; same field as Curve25519

Scalar multiplication overview

Field element representation

- Use double-precision floating points

Field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions

Field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation

Field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation
- Use 12 limbs to represent 255 -bit numbers

Field element representation

- Use double-precision floating points
- Allows $4 \times$ vectorized operations using SIMD instructions
- Radix- $2^{21.25}$ redundant representation
- Use 12 limbs to represent 255-bit numbers
- l.e. $f=f_{0}+f_{1}+\ldots+f_{11}$

Field arithmetic

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb

Field arithmetic

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb
- Addition
- $(f+g)_{i}=f_{i}+g_{i}$
- $(f-g)_{i}=f_{i}-g_{i}$

Field arithmetic

- Carry
- $\operatorname{TOP}\left(f_{i}\right)$: force loss of precision
- Then, move "high" bits to next limb
- Addition
- $(f+g)_{i}=f_{i}+g_{i}$
- $(f-g)_{i}=f_{i}-g_{i}$
- Multiplication
- $(f \cdot g)_{k}=\sum_{i+j=k} f_{i} g_{i}+\sum_{i+j=k+12}\left(2^{-255} \cdot 19\right) f_{i} g_{i}$
- Optimized using Karatsuba's multiplication

Addition formulas

- Use Renes-Costello-Batina formulas
- Rewrite using graphs into vectorized operations
- Implement using field arithmetic functions

Point doubling

Point doubling

Point addition

add_generic

Point addition

Scalar multiplication

- Use left-to-right double-and-add

Scalar multiplication

- Use left-to-right double-and-add
- Optimization: use signed window method $(w=5)$

Scalar multiplication

- Use left-to-right double-and-add
- Optimization: use signed window method $(w=5)$
- Uses $263 \cdot$ double $+59 \cdot$ add operations

Outline

Introduction

Preliminaries

Cofactor security

ECC implementation

Results

Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation	Sandy Bridge	Ivy Bridge	Haswell
Curve25519 (Sandy2x)	159kcc	157kcc	-
this work	390 kcc	383kcc	340kcc

Compared to Curve25519

Table: Cycle counts for Sandy2x and this work.

Implementation	Sandy Bridge	Ivy Bridge	Haswell
Curve25519 (Sandy2x)	159kcc	157kcc	-
this work	390kcc	383kcc	340kcc

Conclusion: about $2.5 \times$ slower

Thank you! I

Acknowledgements <3:

- Peter, (+the department, Marrit, Judith, Gerdriaan)
- The LLVM project (especially for llvm-mca)
- Olivier (from SNT; for lending their Sandy Bridge machine)

Thank you! I

Acknowledgements <3:

- Peter, (+the department, Marrit, Judith, Gerdriaan)
- The LLVM project (especially for llvm-mca)
- Olivier (from SNT; for lending their Sandy Bridge machine)

Stuff I left out:

- Ristretto
- Politics
- Many implementation details

Thank you! II

The code is at https://github.com/dsprenkels/curve13318

Extra reading:

- My thesis: https://dsprenkels.com/files/thesis-20190311.pdf
- Monero vulnerability (1): https://nickler.ninja/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
- Monero vulnerability (2): https://moderncrypto.org/mail-archive/curves/2017/000898.html

Find me through:

- Email: amber@electricdusk.com
- PGP key: 951D 6F6E C19E 5D87 1A61 A7F4 1445 C075 FFD5 68CD

References I

Barreto, P.S.L.M.: on Twitter (May 2017), https://twitter.com/pbarreto/status/869103226276134912

Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. pp. 207-228 (2006), https://cr.yp.to/ecdh/curve25519-20060209.pdfBernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. pp. 124-142 (2011), https://ed25519.cr.yp.to/ed25519-20110926.pdf

Chou, T.: Sandy2x: New Curve25519 speed records. pp. 145-160 (2016), https://www.win.tue.nl/~tchou/papers/sandy2x.pdf

Genkin, D., Valenta, L., Yarom, Y.: May the Fourth Be With You: A microarchitectural side channel attack on several real-world applications of Curve25519. pp. 845-858 (2017), https://eprint.iacr.org/2017/806.pdf

酉
Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR 145(2), 293-294 (1962), http://www.mathnet.ru/php/getFT.phtml?jrnid=dan\&paperid=26729\&what=fullt\&option_lang=eng

References II

Kaufmann, T., Pelletier, H., Vaudenay, S., Villegas, K.: When constant-time source yields variable-time binary: Exploiting Curve25519-donna built with MSVC 2015. pp. 573-582 (2016), https://infoscience.epfl.ch/record/223794/files/32_1.pdf

國 Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 209-209 (1987), https: //www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
luigi1111, "fluffypony" Spagni, R.: Disclosure of a major bug in cryptonote based currencies (May 2017), https: //src.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Miller, V.S.: Use of elliptic curves in cryptography. pp. 417-426 (1986), https://www.researchgate.net/profile/Victor_Miller/publication/227128293_Use_of_Elliptic_Curves_ in_Cryptography/links/0c96052e065c94b47c000000/Use-of-Elliptic-Curves-in-Cryptography.pdf

気
Perrin, T.: Subject: [curves] CryptoNote and equivalent points (May 2017), https://moderncrypto.org/mail-archive/curves/2017/000898.html

Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order elliptic curves. pp. 403-428 (2016), http://eprint.iacr.org/2015/1060

References III

圊
Schnorr, C.P.: Efficient signature generation by smart cards 4(3), 161-174 (Jan 1991), https: //www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_ by_smart_cards/links/0046353849579ce09c000000/Efficient-signature-generation-by-smart-cards.pdf

Double-and-add algorithm

```
function DoubleAndAdd \((k, P)\)
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(n-1\) down to 0 do
        \(R \leftarrow[2] R\)
        if \(k_{i}=1\) then
            \(R \leftarrow R+P\)
        else
            \(R \leftarrow R+\mathcal{O}\)
        end if
    end for
    return \(R\)
end function
```


Fixed-window double-and-add

```
function FixedWindow \((k, P)\)
\(\triangleright\) Compute \([k] P\)
    \(k^{\prime} \leftarrow \mathrm{Windows}_{w}(k)\)
    Precompute ( \([2] P, \ldots,\left[2^{w}-1\right] P\) )
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(\frac{n}{w}-1\) down to 0 do
        for \(j\) from 0 to \(w-1\) do
                \(R \leftarrow[2] R\)
                \(\triangleright w\) doublings
        end for
        if \(k_{i}^{\prime} \neq 0\) then
            \(R \leftarrow R+\left[k_{i}^{\prime}\right] P\)
                        \(\triangleright\) Addition
        else
            \(R \leftarrow R+\mathcal{O}\)
                \(\triangleright\) Addition
        end if
    end for
    return \(R\)
end function
```


Signed double-and-add

```
function \(\operatorname{SignedFixedWindow}(k, P)\)
\(\triangleright\) Compute \([k] P\)
    \(k^{\prime} \leftarrow\) RecodeSigned \(\left(\operatorname{Windows}_{w}(k)\right)\)
    Precompute ( \([2] P, \ldots,\left[2^{w-1}\right] P\) )
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from \(\frac{n}{w}-1\) down to 0 do
        for \(j\) from 0 to \(w-1\) do
        \(R \leftarrow[2] R\)
    end for
        if \(k_{i}^{\prime}>0\) then
            \(R \leftarrow R+\left[k_{i}^{\prime}\right] P \quad \triangleright\) Addition
        else if \(k_{i}^{\prime}<0\) then
            \(R \leftarrow R-\left[-k_{i}^{\prime}\right] P \quad \triangleright\) Addition
        else
            \(R \leftarrow R+\mathcal{O}\)
        end if
    end for
    return \(R\)
end function
```


Implemented signed double-and-add

```
function \(\operatorname{ScalarMultiplication~}(k, P)\)
    \(\mathbf{T} \leftarrow(\mathcal{O}, P, \ldots,[16] P)\)
    \(k^{\prime} \leftarrow \operatorname{RecodeSigned}^{\left(\operatorname{Windows}_{5}(k)\right)}\)
    \(R \leftarrow \mathcal{O}\)
    for \(i\) from 50 down to 0 do
        for \(j\) from 0 to 4 do
        \(R \leftarrow[2] R \quad \triangleright 5\) doublings
    end for
    if \(k_{i}^{\prime}<0\) then
        \(R \leftarrow R-\mathbf{T}_{-k_{i}^{\prime}} \quad \triangleright\) Addition
        else
            \(R \leftarrow R+\mathbf{T}_{k_{i}^{\prime}}\)
        end if
    end for
    return \(R\)
\(\triangleright R=\left(X_{R}: Y_{R}: Z_{R}\right)\)
end function
```


Depiction of $\operatorname{TOP}(f)$

Signed windows

$$
k=\underbrace{1011}_{k_{3}^{\prime}} \underbrace{0010}_{k_{2}^{\prime}} \underbrace{0110}_{k_{1}^{\prime}} \underbrace{1110}_{k_{0}^{\prime}}
$$

Signed window recoding

$$
\underbrace{\substack{1 \\ \underbrace{-1011}_{k_{3}^{\prime \prime}} \\-101} \underbrace{0010}_{k_{2}^{\prime \prime}} 0}_{k_{4}^{\prime \prime}} \underbrace{\downarrow_{k_{0}^{\prime \prime}}^{111}}_{k_{1}^{\prime \prime}} \underbrace{1110}_{-010}
$$

